Экспериментальная оценка нагрузок на плавучий объект от прямого воздействия волн цунами
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Merkulov V. I. (2020). Analysis of Russian Arctic LNG projects and their development prospects. 2020 IOP Conf. Ser.: Mater. Sci. Eng. 940 012114.
Didenko N. I. and Cherenkov V. I. (2018). Economic and geopolitical aspects of developing the Northern Sea Route. 2018 IOP Conf. Ser.: Earth and Environmental Science 180 012012.
Songhurst B. (2017). The Outlook for Floating Storage and Regasification Units (FSRUs) // OIES PAPER: July 2017. NG 123. - 46 p.
СП 292.1325800.2017. Здания и сооружения в цунамиопасных районах / Минстрой РФ, 2017.
Кульмач П. П., Филиппенок В. З. Воздействие цунами на морские гидротехнические сооружения. - М.: Транспорт, 1984. - 303 с.
Nistor I., Palermo D., Nouri Y., Saatcioglu M. (2009). Tsunami-Induced Forces on Structures // Handbook of Coastal and Ocean Engineering. DOI: 10.1142/9789812819307 0011. - Pp. 261 - 286.
Belyaev N. D., Lebedev V. V., Nudner I. S., et al. (2014) Experimental study of tsunami-type waves impact on soil at foundations of offshore gravity platforms // Magazine of Civil Engineering. 2014. No 6 (50). Pp. 4 - 12. DOI: 10.5862/MCE.50.1. (rus).
Gusev O. I., Khakimzyanov G. S., Chubarov L. B. (2020). Numerical investigation of the wave force on a partially immersed rectangular structure: Long waves over a flat bottom. Ocean Engineering. Volume 221, 1 February 2021, 108540. https://doi.org/10.1016/j.oceaneng.2020.108540.
Francis M. J., Yeh H. (2006). Tsunami Inundation Scour of Roadways, Bridges and Foundations. Observations and Technical Guidance from the Great Sumatra Andaman Tsunami. EERI / FEMA NEHRP 2006 Professional Fellowship Report. - 34 p.
Teslyaruk I., Bolshev A. (2015). Optimization of the holding system of floating marine objects on the basis of numerical modeling of their behavior. Proceedings of the 3rd International Conference on Optimization and Analysis of Structures. 2015. Pp. 117 - 122.
Elistratov V. V., Bolshev A. S., Frolov S. A. and Panfilov A. A. (2018). The development of conceptual options to the construction of ice-resistant floating wind power plants. - Polar Mechanics 2018, IOP Conf. Series: Earth and Environmental Science, 193, 012022. DOI:10.1088/1755-1315/193/1/012022.
Bolshev A. S., Elistratov V. V., Panfilov A. A., Kharseev A. E. (2020). Conceptual Analysis of the Power of Offshore Wind Plants Designed to Operate in Arctic Conditions. - Proceedings of International Offshore and Polar Engineering Conference. 2020, October. Pp. 508 - 514.
Kubo Masayoshi, Ik-Soon Cho, Sakakibara Shigeki, Shunichi Koshimura. (2005). The Influence of Tsunamis on Moored Ships and Ports // Journal of Navigation and Port Research. 2005. 29 (4). Pp. 319 - 325. DOI: 10.5394/KINPR.2005.29.4.319.
Smith E., Lynett P. and Rodriguez C. (2018). Tsunami hazard assessment for permanently moored FSRU marine terminal in Chile // PIANC-World Congress Panama City, Panama 2018. - 18 p.
Kantardgi I. G., Zheleznyak M. J. (2016). Laboratory and numerical study of waves in the port area // Magazine of Civil Engineering. 2016. No. 6. Pp. 49 - 59. DOI: 10.5862/MCE.66.5.
Kantardgi I. G., Kuznetsov K. I. (2014). Field measurement of waves for defining loads on marine hydraulic structures // Magazine of Civil Engineering. 2014. No. 4. Pp. 49 - 62. DOI: 10.5862/MCE.48.6.
Makarov K. N., Chebotarev A. G. (2015). Breakwater placement at the root of a seawall // Magazine of Civil Engineering. 2015. No. 3. Pp. 67 - 78. DOI: 10.5862/MCE.55.8.
Chandler I., Allsop W., Robinson D., et al. (2017). Tsunami Simulators in Physical Modelling - Concept to Practical Solutions. 19th EGU General Assembly, EGU2017, Proceedings from the Conference held 23 - 28 April 2017 in Vienna, Austria. - P. 16874.
Bridges K., Cox D. T., Thomas S., Shin S., and Rueben M. (2013). Large-scale wave basin experiments on the influence of large obstacles on tsunami inundation forces. Coast. Struct. 201, 1237 - 1248. DOI: 10.1142/9789814412216 0107.
Briggs M. J., Yeh H., Cox D. T. (2018). Handbook of Coastal and Ocean Engineering. Chapter 56: Physical Modeling of Tsunami Waves. Pp. 1577 - 1609. https://doi.org/10.1142/97898132040270056.
Tomiczek T., Prasetyo A., Mori N., Yasuda T., and Kennedy A. B. (2016). Physical modelling of tsunami onshore propagation, peak pressures, and shielding effects in an urban building array. Coast. Eng. 117, 97 - 112. DOI: 10.1016/j.coastaleng.2016.07.003.
Veldman A. E. P., Luppes R., Bunnik T., et al. (2011). Extreme Wave Impact on Offshore Platforms and Coastal Constructions: Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. V. 7. Pp. 365 - 376. ASME. https://doi.org/10.1115/OMAE2011-49488.
Babchik D., Belyaev N., Lebedev V., et al. (2014). Experimental investigations of local scour caused by currents and regular waves near drilling barge foundations with cutout in stern // Proceedings of 5th International Conference "Coastlab14". Varna, Bulgaria. Pp. 114 - 124.
Semenov K. K., Lebedev V. V., Nudner I. S., et al. (2015). Impact of waves and currents on the soil near gravity-type offshore platform foundation: numerical and experimental studies // Proceedings of the ISOPE. 2015. Pp. 807 - 814.
Shchemelinin L. G., Utin A. V., Belyaev N. D., et al. (2014). Experimental studies regarding the efficiency of sea bed soil protection near offshore structures // Proceedings of the ISOPE. 2014. Busan, Korea, ISBN 978 - 1 880653 91 - 3, vol. 2, paper 14TPC-0320. Pp. 625 - 631.
Лаппо Д. Д., Жуковец А. М., Мищенко С. С. Условия автомодельности в исследованиях волнового движения жидкости // Известия ВНИИГ: Сб. науч. трудов. 1979. Т. 132. С. 59 - 65.
DOI: http://dx.doi.org/10.34831/EP.2022.99.38.002
Ссылки
- На текущий момент ссылки отсутствуют.
© 1998 — 2024 НТФ «Энергопрогресс»
Контакты:
Адрес: (почтовый): 129090, г. Москва, ул. Щепкина, д. 8, этаж 1, пом. III, ком.1-6, АО НТФ «Энергопрогресс»
Тел.: + 7 495 911-26-96
E-mail: gts1930@yandex.ru
Наши партнеры: