Открытый доступ Открытый доступ  Ограниченный доступ Платный доступ или доступ для подписчиков

Роль микроорганизмов в разрушении бетонных и железобетонных конструкций

А. Л. Брюханов, Д. Ю. Власов, М. А. Майорова, И. М. Царовцева

Аннотация


Рассмотрена роль микроорганизмов в процессах разрушения бетонных и железобетонных конструкций. Описаны механизмы микробиологического воздействия и образования микробных биоплёнок на бетонных поверхностях. Охарактеризованы основные группы коррозионно-активных микроорганизмов, в особенности сероокисляющие и сульфатредуцирующие. Приведены основные методы анализа процессов микробиологической коррозии и защиты бетонов от биологического разрушения.

Ключевые слова


бетон; железобетон; гидротехнические сооружения (ГТС); микробиологическая коррозия; биоплёнки; сероокисляющие бактерии; сульфатредуцирующие бактерии; нитрифицирующие бактерии; микромицеты; биоциды; concrete; reinforced concrete; hydrotechnical constructions (HTC); microbially induced corrosion (MIC); biofilms; sulfur-oxidizing bacteria; sulfate-reducing bacteria; nitrifying bacteria; micromycetes; biocides

Полный текст:

PDF

Литература


Wei S., Jiang Z., Liu H., Zhou D., Sanchez-Silva M. Microbiologically induced deterioration of concrete - a review // Brazilian Journal of Microbiology. 2014. V. 44(4). P. 1001 - 1007.

Sun X., Jiang G., Bond P. L., Keller J. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: the effect of high H2S loads // Water Research. 2015. V. 81. P. 84 - 91.

Roberts D. J., Nica D., Zuo G., Davis J. L. Quantifying microbially induced deterioration of concrete: initial studies // International Biodeterioration and Biodegradation. 2002. V. 49. P. 227 - 234.

Frank-Kamenetskaya O. V., Vlasov D. Yu., Rytikova V. V. (eds.). The effect of the environment on Saint Petersburg's cultural heritage. Results of monitoring the historical necropolis monuments. Springer International Publishing. 2019. 188 p.

Гусев Б. В., Файвусович А. С. Прогнозирование долговечности бетона при выщелачивании. - М.: Научный мир, 2014. - 112 с.

Дурчева В. Н., Измайлова Р. А., Легина Е. Е. Биокоррозия бетона и железобетонных конструкций гидротехнических сооружений // Гидротехника ХХI век. 2011. Т. 2(5). С. 62 - 65.

Дурчева В. Н., Измайлова Р. А., Легина Е. Е. Результаты микробиологических исследований гидротехнических сооружений // Гидротехническое строительство. 2014. № 9. С. 27 - 31.

Grengg C., Mittermayr F., Ukrainczyk N., Koraimann G., Kienesberger S., Dietzel M. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: a review // Water Research. 2018. V. 134. P. 341 - 352.

De Belie N., Monteny J., Beeldens A., Vincke E., van Gemert D., Verstraete W. Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes // Cement and Concrete Research. 2004. V. 34. P. 2223 - 2236.

Абашина Т. Н., Вайнштейн М. Б., Хаустов С. А. Бактериальная коррозия бетона и биовыщелачивание отходов горнорудной промышленности: методическое руководство для микробиологических исследований. - Тула: Изд-во ТулГУ, 2015. - 102 с.

Панова Е. Г., Власов А. Д., Попова Т. А., Зеленская М. С., Власов Д. Ю. Биологическое выветривание гранита в условиях городской среды // Биосфера. 2015. Т. 7(1). С. 161 - 179.

Hall-Stoodley L., Costerton J. W., Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases // Nature Reviews Microbiology. 2004. V. 2. P. 95 - 108.

Gollop R. S., Taylor H. F. W. Microstructural and microanalytical studies of sulfate attack. Sulfate-resistant Portland cement: reactions with sodium and magnesium sulfate solutions // Cement and Concrete Research. 1995. V. 25(8). P. 1581 - 1590.

Nica D., Davis J. L., Kirby L., Zuo G., Roberts D. J. Isolation and characterization of sulfur-oxidizing organisms from corroded concrete in Houston sewers // International Biodeterioration and Biodegradation. 2000. V. 46(1). P. 61 - 68.

Yamanaka T., Aso I., Togashi S., Tanigawa M., Shoji K., Watanabe T., Watanabe N., Maki K., Suzuki H. Corrosion by bacteria of concrete in sewerage systems and inhibitory effects of formates on their growth // Water Research. 2002. V. 36(10). P. 2636 - 2642.

Vollertsen J., Nielsen A. H., Jensen H. S., Wium-Andersen T., Hvitved-Jacobsen T. Corrosion of concrete sewers - the kinetics of hydrogen sulfide oxidation // Science of the Total Environment. 2008. V. 394. P. 162 - 170.

Василенко М. И., Гончарова Е. Н. Микробиологические особенности процесса повреждения тонных поверхностей // Фундаментальные исследования. 2013. Вып. 4. С. 886 - 891.

Parker C. D. The corrosion of concrete. The function of Thiobacillus concretivorus nov. spec. in the corrosion of concrete exposed to atmospheres containing hydrogen sulfide // Australian Journal of Experimental Biology and Medical Science. 1945. V. 23. P. 91 - 98.

Maeda T., Negishi A., Komoto H., Oshima Y., Kamimura K., Sugio T. Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants // Journal of Bioscience and Bioengineering. 1999. V. 88(3). P. 300 - 305.

Vincke E., Boon N., Verstraete W. Analysis of the microbial communities on corroded concrete sewer pipes - a case study // Applied Microbiology and Biotechnology. 2001. V. 57(5 - 6). P. 776 - 785.

Okabe S., Odagiri M., Ito T., Satoh H. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems // Applied and Environmental Microbiology. 2007. V. 73(3). P. 971 - 980.

Maeda T., Negishi A., Oshima Y., Nogami Y., Kamimura K., Sugio T. Isolation of a sulfur-oxidizing bacterium that can grow under alkaline pH, from corroded concrete // Bioscience, Biotechnology and Biochemistry. 1998. V. 62(6). P. 1087 - 1092.

Gao S. H., Ho J. Y., Fan L., Richardson D. J., Yuan Z., Bond P. L. Antimicrobial effects of free nitrous acid on Desulfovibrio vulgaris: implications for sulfide-induced corrosion of concrete // Applied and Environmental Microbiology. 2016. V. 82(18). P. 5563 - 5575.

Etim I. N., Wei J., Dong J., Xu D., Chen N., Wei X., Su M., Ke W. Mitigation of the corrosion-causing Desulfovibrio desulfuricans biofilm using an organic silicon quaternary ammonium salt in alkaline media simulated concrete pore solutions // Biofouling. 2018. V. 34(10). P. 1121 - 1137.

Chaussadent T., Boinski F., Divet L., Pavoine A., van Hullebusch E. Study of the mechanisms of biodegradation of concrete in sewer systems by biogenic hydrogen sulfide and sulphuric acid. Concrete in aggressive aqueous environments - performance, testing and modeling // RILEM Publications SARL. 2009. P. 496 - 497.

Jensen H. S., Nielsen A. H., Lens P. N., Hvitved-Jacobsen T., Vollertsen J. Hydrogen sulphide removal from corroding concrete: comparison between surface removal rates and biomass activity // Environmental Technology. 2009. V. 30(12). P. 1291 - 1296.

Santo Domingo J. W., Revetta R. P., Iker B., Gomez-Alvarez V., Garcia J., Sullivan J., Weast J. Molecular survey of concrete sewer biofilm microbial communities // Biofouling. 2011. V. 27(9). P. 993 - 1001.

Gomez-Alvarez V., Revetta R. P., Santo Domingo J. W. Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system // BMC Microbiology. 2012. V. 12. P. 122 - 135.

Li H., Liu D., Lian B., Sheng Y., Dong H. Microbial diversity and community structure on corroding concretes // Geomicrobiology Journal. 2012. V. 29(5). P. 450 - 458.

Welton R. G., Ribas Silva M., Gaylarde C., Herrera L. K., Anleo X., De Belie N. Techniques applied to the study of microbial impact on building materials // Materials and Structures. 2005. V. 38. P. 883 - 893.

Shi X., Xie N., Gong J. Recent progress in the research on microbially influenced corrosion: a bird's eye view through the engineering lens // Recent Patents on Corrosion Science. 2011. V. 1(2). P. 118 - 131.

Sambasivan S., Steiner K. A., Rangan K. K. Aluminium phosphate coatings: US Patent 7311944. 2007.

Haile T., Nakhla G. The inhibitory effect of antimicrobial zeolite on the biofilm of Acidithiobacillus thiooxidans // Biodegradation. 2009. V. 21(1). P. 123 - 134.

Lin C. B., Yeh S. H., Liu W. C., Lee H. C. Nano water paint having nano particles surfaced with self-assembly monolayers: US Patent Application 20060063873 A1. 2006.

Soleimani S., Ormeci B., Isgor O. B. Growth and characterization of Escherichia coli DH5a biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD) // Applied Microbiology and Biotechnology. 2013. V. 97(3). P. 1093 - 1102.

Vincke E., van Wanseele E., Monteny J., Beeldens A., De Belie N., Taerwe L., van Gemert D., Verstraete W. Influence of polymer addition on biogenic sulfuric acid attack of concrete // International Biodeterioration and Biodegradation. 2002. V. 49. P. 283 - 292.

Okeniyi J. O., Omoniyi O. M., Okpala S. O., Loto C. A., Popoola A. P. I. Effect of ethylene-diaminetetraacetic disodium dihydrate and sodium nitrite admixtures on steel-rebar corrosion in concrete // European Journal of Environmental and Civil Engineering. 2013. V. 17(5). P. 398 - 416.

Hart R. L., Virgallito D. R., Work D. E. Microencapsulation of biocides and antifouling agents: US Patent 7938897 B2. 2011.

Vishwakarmaa V., George R. P., Ramachandran D., Anandkumar B., Mudalib U. K. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments // Environmental Technology. 2014. V. 35(1 - 4). P. 42 - 51.

De Muynck W., De Belie N., Verstraete W. Effectiveness of admixtures, surface treatments and antimicrobial compounds against biogenic sulfuric acid corrosion of concrete // Cement and Concrete Composites. 2009. V. 31. P. 163 - 170.


Ссылки

  • На текущий момент ссылки отсутствуют.


© 1998 — 2020 НТФ «Энергопрогресс»


Контакты:

Адрес: (почтовый): 129090, г. Москва, ул. Щепкина, д. 8, этаж 1, пом. III, ком.1-6, АО НТФ Энергопрогресс»

Тел.: + 7 495 741-49-81. Факс: + 7 495 741-49-81
E-mail: gts1930@yandex.ru


Наши партнеры: